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Abstract 

For a chemical reaction system modeled by Jc = k l A x -  k2x2-k3xy  +k4y2, 
= k3xy - k4y2 - ksy + k6B, it is shown that for each positive choice of parameters 

ki, A, B there exists a unique stationary state which is globally asymptotically stable 
in the positive quadrant. A criterion for the non-existence of periodic solutions is given 
for the generalized Lotka-Volterra system: k =f(x)h(x, y), 3) = g(y)k(x,  y). 

Oscillations in chemical systems have been regarded as important to the under- 
standing of highly organized structures, such as biological organisms [10]. Even simple 
chemical systems can exhibit sustained oscillations and self-organization. For example, 
such behavior is observed in the Belousov-Zhabotinskii reaction, which may be 
described as follows: an initially homogeneous medium with a color indicator to 
display the concentrations of components begins to change color periodically and 
eventually organizes spatially into alternating red and blue bands which are constant in 
color [ 10]. 

Historically, one approach to understanding such phenomena has consisted of 
using the law of mass action to characterize the chemical system by differential equa- 
tions and examine these for multiple stationary states or sustained oscillations, such as 
limit cycles. 

The model 

kl 
A + X  ~.~-2X, 

k2 

k3 
X + Y ~ 2Y, (1) 

k4 

k5 
Y ~--~- B, 

k6 

has been extensively studied in this connection [11,12]. It incorporates factors thought 
to be necessary for a chemical system to exhibit such behavior: it is an open, auto- 
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catalytic system with nonlinear rate dependences, which can be removed arbitrarily far 
from thermodynamic equilibrium by varying the parameters (ref. [11], p. 120). It 
warranted early attention, since bimolecular mechanisms are common. Moreover, for 
k 2 = k 4 = k 6 = 0, model (1) reduces to a Lotka-Volterra model in which any initial 
conditions lead to sustained oscillations [9]. 

Previous results for (1) show that a stationary state for positive X and Y is either 
a saddle point, center or stable node or focus, and that for some values of parameters, 
oscillatory decay to the stationary state can occur. In particular, a limit cycle cannot 
surround an unstable node or focus [6,7,12]. 

It is shown here that for each positive choice of parameters, there is a unique 
stationary state in the positive quadrant which is globally asymptotically stable there. 
The system can have no multiple stationary states or sustained oscillations, but damped 
oscillations may occur for some values of parameters. 

Therefore, more general models must be considered to account for systems with 
sustained oscillations. In theorem (8), a criterion for the non-existence of periodic 
solutions is developed for generalized Lotka-Volterra (LV) models of the form 

± =f(x)h(x ,  y), y = g(y)k(x,  y). 

In (1), the components A and B have constant concentrations, while those of X 
and Y can vary in time. Applying the law of mass action to (1) yields: 

def 
2 =  k l A x - k 2 x 2 - k 3 x y + k a y  2 = P(x ,y ) ,  

def 
= k3xy - k 4 y 2 - k s y + k 6  B = Q(x,y) .  (2) 

Attention is restricted to I, the quadrant where X and Y have non-negative 
concentrations. The positive parameters k/, A, B are fixed but arbitrary. 

Let (x o, Yo) be a singular point of (2) in I, 

P(xo, Yo) = O, Q(xo, y o ) = 0 ,  xo > O, yo > O. (3) 

The eigenvalues of the linear part of  (2) at (x o, Yo) are given by: 

where 

T =  

T +  ~ - 2 -  4J  
(4) 



R.H. Hering, Lotka- Volterra chemical oscillations 199 

THEOREM (5) 

The stationary state solution x = x o, y = Yo is asymptotically stable. A solution's 
approach to it may be monotone or oscillatory, depending on parameters. 

Proof 

Inspection of (2) shows (x o, Yo) ~ I°" From the expressions 

and 

T =  - 
-k4y~ k6B ] 

+ k 2 x  o+ +k4y  0 < 0  
Xo Yo 

j =  y2 Ek4Yo - k3xo ] 2 + k 4 k 6 B y  2 + k2 k6Bx  2 + k2 k4x2 y 2 

xoYo 
> 0 ,  

it follows that all eigenvalues have negative real parts and x = x o, y = Yo is asymptoti- 
cally stable. (x o, Yo) is a spiral point or a node, depending on the sign of  T 2 -  4J. 
Numerical examples show that both cases are possible for appropriate values of  the 
parameters. Phase portraits are found in ref. [2], p. 389, and show that the approach is 
monotone for nodes and oscillatory for spiral points. [] 

Consider the parabola R(x, y) = P(x, y) + Q(x, y) = klAx - k2x a - ksy + k6B = O. 
Since (0, O) ~ R(x, y)  = O, we may construct the curve C = LMNO, as shown in fig. 1, 

0 

L 

................... ~ _ N 

M 
Fig. 1. Illustration of curve C = LMNO and the region ~. 

N 

where LM and NO are lines of  slope -1 .  f2 denotes the region consisting of  C and its 
interior. N = (-~n~, ½"~-) is a vector perpendicular to lines of  slope -1 .  
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THEOREM (6) 

For each positive choice of parameters k/, A, B, there is a unique stationary state 
solution in closed quadrant I and it is globally asymptotically stable there. 

Proof 

The direction field along OI shows that all solutions in I move into I ° and thus 
eventually enter some region of the form ~ in fig. 1. The component of the direction 
field along N is given by F(x, y).N = -}~12(P(x, y) + Q(x, y)) = -~4-2R(x, y). Then 
solutions along LM move parallel to N since R(x, y) > 0 there, and solutions along NO 
move antiparallel to N. Then solutions everywhere along C move into ~0 and the index 
of C is +1 [1]. There are finitely many, say n, singular points of (2) in I and these lie 
along R(x, y) = 0 in I °. Since each has index +1 by asymptotic stability, the index of 
C which encloses them all is n [1]. Thus, n = 1 and there exists a unique singular point 
of (2) in I. In ~,  we have with B(x, y) = 1/xy that 

1 I k4y2 k6B 1 (BP)+ (BQ) = - -  k 2 x +  + k 4 y +  < 0 .  (7) 
Ox ~y xy x y 

Then by the Bendixson-Dulac Theorem (ref. [3], p. 213), there exist no periodic 
solutions in ~.  Summarizing, we have that any solution in I enters some compact 
invariant region ~ containing no periodic solutions and exactly one asymptotically 
stable singular point. Thus, by the Poincar6-Bendixson Theorem [3], all solutions in I 
approach the unique stationary state solution x = x 0, y = Yo- Since k i, A, B were arbitrary 
throughout, this result holds for any positive choice of parameters. [] 

We therefore conclude that the only evolution possible for this model is asymp- 
totic decay to the unique stationary state. Fluctuations from the stationary state cannot 
approach some new stationary state or give rise to sustained oscillations, although in the 
appropriate range of parameters, the concentrations of components will undergo 
damped oscillations. 

Although this quadratic system can have no periodic solutions, higher-order 
models involving, for instance, cubic autocatalysis, have been shown to have limit cycle 
solutions [12]. In particular, cubic autocatalysis has been proposed to account for 
the iodate-arsenous acid reaction [8] which, experimentally, exhibits oscillatory 
behavior [5]. Therefore, constructing generalized LV models admitting sustained oscil- 
lations is currently of great interest in characterizing experimentally observed oscilla- 
tory reaction systems. 

To help identify and exclude generalized LV systems which can have no periodic 
solutions in the positive region, we apply the Bendixson-Dulac criterion. 
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THEOREM (8) 

J; = f ( x ) h ( x , y )  = P(x ,y) ,  f , g  

= g ( y ) k ( x , y ) =  Q(x,y) ,  h ,k  

If 
hx(x ,y )  ky (x ,y )  

L ( x , y )  - + 
g(y)  h(x) 

C1(~+); 
CI(9U x 9~+). (9) 

(12) 

Then (12), although it is an LV system with cubic autocatalysis, cannot serve as a model  
for oscillatory reactions. 

The case m* = 2, m = 1, n = 1 gives: 

kl k2 k3 
A + 2 X  ---) 3X,  X + Y --) 2Y,  Y ---) B. 

exists and is definite in I °, then (9) has no periodic solution there. 

Proof 

For B(x, y) = 1/( f  (x)g(y)), (BP)x + (BQ)y = L(x, y) is definite in I °. [] 

Consider the generalized LV system in ref. [4]: 

f ( ) *  x 1 = f ( x ) I  g(y)  , (10a) 
L f ( x )  

f* ,  f, g positive and C 1 in 9~ +, 

= g(y)[~6f (x) -  b], (10b) 

fl, b ~ ~+ and f*] f  strictly monotone in 2R +. Here, 

Fr x l 
L ( x , y )  = ~)Lf(x) Jx 

is definite in I ° and thus (10) has no periodic solutions in I °. 
A special case of  (10), analyzed in ref. [4], is 

kl k2 k3 
A + m * X  ---) ( m * + l ) X ,  m X + n Y  --) ( n + l ) Y ,  nY --) B, (11) 

with kinetic equations ~t = k l A x  m*- mkzxmy n, ~9 = k2xmY " - k3Y n. Then, f * / f  = x m* - m 
and (11) can undergo no sustained oscillations when m* ~ m. 
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The conclusions here for (10)--(12) agree with the results in ref. [4], and illustrate 
that (8) has useful application for analyzing generalized LV schemes proposed as 
models for oscillatory chemical reaction systems. 
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